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l“Random” News

1. Lancet 2001: negative correlation between coronary
heart disease mortality and level of vitamin C in
bloodstream (controlling forage, gender, blood pressure,
diabetes, and smoking)

2. Lancet 2002: no effect of vitamin C on mortality in
controlled placebo trial (controlling for nothing)

3. Lancet 2003: comparing among individuals with the
same age, gender, blood pressure, diabetes, and
smoking, those with higher vitamin C levels have lower
levels of obesity, lower levels of alcohol consumption,
are less likely to grow up in working class, etc.



lObservationaI Studies

1. Randomization forms gold standard for causal inference,
because it balances observed and unobserved confounders

2. Cannot always randomize so we do observational studies,
where we adjust for the observed covariates and hope that
unobservables are balanced

3. Better than hoping: design observational study to
approximate an experiment

The planner of an observational study should always ask himself:
How would the study be conducted if it were possible to do it b

controlled experimentation. (Cochran 1965)




‘The Good, the Bad, and the Ugly

Treatments, Covariates, Outcomes

- Randomized Experiment: Well-defined treatment, clear distinction
between covariates and outcomes, control of assignment mechanism

- Better Observational Study: Well-defined treatment, clear distinction
between covariates and outcomes, precise knowledge of assignment
mechanism

 Can convincingly answer the following question: Why do two units who
are identical on measured covariates receive different treatments?

« Poorer Observational Study: Hard to say when treatment began or
what the treatment really is. Distinction between covariates and
outcomes is blurred, so problems that arise in experiments seem to be
avoided but are in fact just ignored. No precise knowledge of
assignment mechanism.



‘The Good, the Bad, and the Ugly

How were treatments assigned?
- Randomized Experiment: Random assignment

- Better Observational Study: Assignment is not random, but
circumstances for the study were chosen so that treatment seems
haphazard, or at least not obviously related to potential outcomes
(sometimes we refer to these as natural or quasi-experiments)

- Poorer Observational Study: No attention given to assignment process,
units self-select into treatment based on potential outcomes



‘The Good, the Bad, and the Ugly

Were treated and controls comparable?
- Randomized Experiment: Balance table for observables.
- Better Observational Study: Balance table for observables.

« Poorer Observational Study: No direct assessment of comparability is
presented.



Example: The Effect of Class Size

- Educators and labor economists are very interested in studying the
effect of class size on learning, e.g. does smaller class size cause
students to achieve higher math and verbal scores?

- Causal effects of class size on pupil achievement is difficult to measure.
Why?

« Since 1969, Maimonides’ rule has been used to determine class size in
Israeli public schools.

“Twenty-five children may be put in charge of one teacher. If the number in the
class exceeds twenty-five but is not more than forty, he should have an

assistant to help with instruction. If there are more than forty, two teachers must
be appointed.”




Angrist and Lavy (1999)
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Angrist and Lavy (1999)
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Plan

« Causal Inference with observational data is hard because of selection
bias

- If we understand the treatment assignment mechanism very well, we can
remove bias by conditioning — Selection On Observables (SOO)

 Plan
- Stats background: conditional independence
 Theory of identification under SOO

- Methods of conditioning: (1) matching; (2) regression
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Conditional Independence

Key to causal inference with observational data
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Joint, Marginal, and Conditional!

For two discrete random variables X and Y the joint PMF fx y(x, y) gives the
probability that X = x and Y = y for all x and y:

fxy(Xx,y)=P(X=xand Y =y) =P(Y=y|X=x)P(X = x)
=P(X=x|Y=y)P(Y=y)

Restrictions:
° fX,Y(Xay) >0 and Exzy fX,Y(Xay) =1.
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Joint Probability Mass Function

« Should the U.S. allow more immigrants to come and live here?

Table: Joint Probabilities
X: Education

lessHS HS College BA

oppose 0.07 0.21 0.17 0.14
Y: Support | neutral 0.02 0.06 0.05 0.05
favor 0.01 0.03 0.04 0.10




‘Marginal Probability Mass Function
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« Should the U.S. allow more immigrants to come and live here?

Table: Joint and Marginal Probabilities

X: Education
lessHS HS College BA | Pr(Y)
oppose 0.07 0.21 0.17 0.14 | 0.60
Y: Support | neutral 0.02 0.06 0.05 0.05 | 0.19
favor 0.01 0.03 0.04 0.10 | 0.20
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Joint and Marginal Probability Mass Function

« Should the U.S. allow more immigrants to come and live here?
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lConditionaI PMF
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 The conditional PMF of Y given X (we write YIX) is the PMF of Y when
X Iis known to be at a particular value X = x:

PX=xand Y=y) fxy(x,y) fxyyx)fy(y)
P(X = x) - Kk(x) fx(x)

fyix(¥|x) =

- Conditional PMFs are just like ordinary PMFs, but refer to a universe
where the “conditioning event” (X = x) is known to have occurred.

- Conditional distributions are key in statistics because they informs us
how the distribution of Y varies across different levels of X.



lConditionaI PMF

Table: Joint Probabilities f(x,y) and Marginal Probabilities f(x),f(y)

Education

f(x,y) | lessHS HS College BA | f(y)
oppose 0.07 0.21 0.17 0.14 | 0.60
Support | neutral 0.02 0.06 0.05 0.05 | 0.19
favor 0.01 0.03 0.04 0.10 | 0.20
f(x) 0.10 0.31 027 0.29 | 1.00

Table: Conditional f(y|x) Probabilities

Education

f(y|x) | lessHS HS College BA
oppose 0.69 0.68 0.62 0.49 | 0.60
Support | neutral 0.19 0.20 0.21 0.17 | 0.19
favor 0.12 0.12 0.18 0.35 | 0.20
1.00 1.00 1.00 1.00 | 1.00
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IConditionaI PMF

 Should the U.S. allow more immigrants to come and live here?
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Conditional Expectation

Definition (Conditional Expectation Discrete Case)

Let Y and X be discrete RVs, then the conditional expectation of Y given the
event X = x is given by:

E[lYIX=x]=)Y yP(Y=y|X=x)=)_yfx(yx)
Yy y

Read: Given X = x, what is the average value of Y?



Conditional Expectation
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Conditional Independence
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Definition (Conditional Independence of Random Variables)
Random variables Y and X are conditionally independent given Z iff

fxyiz(X, ¥|2) = fy1z(y|2) - fx1z(x|Z)
for all triplets (x, y, 2).
Conditional independence implies that
PlY=ylX=x,Z2=2)=P(Y=y|Z=2)

and thus
E[Y|X=x,Z=2]=E[Y|Z =Z]

we usually write Y 1L X|Z

Example: Y: Support X: Income Z: Education



Conditional Independence

23

® E[YIX=0,Z=0] 0% ©
A E[YIX=1,2=0] | % 8
E[YIX=0,2=1]| ® oo,
E[YIX=1,Z=1]| _ o&

oo
o
o © 8b<bo%0
oo 9,
(o) o
Ssetlo &2

Q@
&%
oD
8
8o,

jitter(In Favour of Immigration)
0
|

T T T T
Poor & no BA Rich & no BA Poor & BA Rich & BA

Read: Wealth is independent of support for immigration
conditional on education.
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|dentification under SOO

when we understand how “treatment” is assigned
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Example: Private College Payoff

- All sorts of things are correlated with college attendance decisions and
later earning

- Ability, diligence, personalities, ambitions, family connections
- Controlling for such a wide range of factors seems daunting

- Stacy Dale and Alan Kruger: controlling for the characteristics of
colleges to which students applied and were admitted



‘The College Matching Matrix

TABLE 2.1
The college matching matrix

Privatc Public
Applicant Altered 1996

group  Student  Ivy Leafty  Smart  All State Tall State  State  carnings
A 1 Reject  Admit Admit 110,000

2 Reject Admit Admirt 100,000

3 Reject Admit Admit 110,000

B 4 Admit Admit Admit 60,000

5 Admit Admit Admit 30,000

C 6 Admit 115,000

7 Admit 75,000

D 8 Reject Admit Admirt 90,000

9 Reject Admit Admit 60,000
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Example: Private College Payoff

« Uma and Harvey:

 Both applied to Harvard and U-Mass; both admitted

- Harvey chooses Harvard while Uma opted for U-Mass

- We can compare earnings of Uma and Harvey after they graduate

« What are being control for in such a comparison?

» Lots of things, such as ability (in the eyes of the admission committees), ambition

- What are not being control for?

- Reasons why Uma choose U-Mass instead of Harvard: a successful uncle graduated
from U-Mass, a best friend who chose U-Mass, missing the deadline of a scholarship

for Harvard, etc.

« We hope that these factors are not highly correlated with earning potentials



lControI for “Selection”
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No sclection controls

Selection controls

(1) (2) (3)

(4) (5) (6)

Private school

Own SAT score + 100
Log parental income
Female

Black

Hispanic

Asian

Other/missing race

High school top 10%
High school rank missing

Athlete

Selectivity-group dummics

135 095 086
(.055) (.052) (.034)

048 .016
(.009) (.007)

219
(.022)

—.403
(.018)

.005
(.041)

062
(.072)
170
(.074)

—.074
(.157)

095
(.027)

019
(.033)

123
(.025)

No No No

007 003 013
(.038) (.039) (.025)

033 001
(.007) (.007)

190
(.023)

-.395
(.021)

—.040
(.042)

032
(.070)

145
(.068)

-.079
(.156)

082
(.028)

015
(.037)

115
(.027)

Yes Yes Yes




Review
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- Why We Often End up Doing Observational Studies
- Good and Bad Observational Studies

- Conditional Independence

- Identification under SOO — College Attendance Example
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‘The Good, the Bad, and the Ugly

Treatments, Covariates, Outcomes

- Randomized Experiment: Well-defined treatment, clear distinction
between covariates and outcomes, control of assignment mechanism

- Better Observational Study: Well-defined treatment, clear distinction
between covariates and outcomes, precise knowledge of assignment
mechanism

 Can convincingly answer the following question: Why do two units who
are identical on measured covariates receive different treatments?

« Poorer Observational Study: Hard to say when treatment began or
what the treatment really is. Distinction between covariates and
outcomes is blurred, so problems that arise in experiments seem to be
avoided but are in fact just ignored. No precise knowledge of
assignment mechanism.



Conditional Independence
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Read: Wealth is independent of support for immigration
conditional on education.



‘The College Matching Matrix

TABLE 2.1
The college matching matrix

Privatc Public
Applicant Altered 1996

group  Student  Ivy Leafty  Smart  All State Tall State  State  carnings
A 1 Reject  Admit Admit 110,000

2 Reject Admit Admirt 100,000

3 Reject Admit Admit 110,000

B 4 Admit Admit Admit 60,000

5 Admit Admit Admit 30,000

C 6 Admit 115,000

7 Admit 75,000

D 8 Reject Admit Admirt 90,000

9 Reject Admit Admit 60,000
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Conditional Ignorability

@ Units:i=1,...,n
@ Treatment: D; € {0,1}
@ Potential outcomes: Y;(d), where d =0, 1
@ Quantities of interest:
ATE:  aare E[Yi(1) — Yi(0)]
ATT:  aarr E[Yi(1) - Yi(0) | D = 1]

Question: Can we identify aare and aarr when D; is not randomized?
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Conditional Ignorability

@ Pre-treatment covariates: X; = [Xi1, ..., Xik]" € X

e Predetermined and causally precedent with respect to D;
e Examples: Sex, race, age, etc.

e X; may be correlated with both D; and Y;(d), thereby confounding
the causal relationship

e Excludes correlates that are potentially affected by D;
(post-treatment covariates)
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Conditional Ignorability

Recall that randomized experiments work because:

{Yi(0), (1)} L D

Assumption: Conditional Ignorability
{Yi(0),Y;(1)} L D;| Xj=x forany xe X

(a.k.a. exogeneity, unconfoundedness, selection on observables, no omitted variables)

"

Read: Among units with same values of X;, D; is “as-if” randomly assigned.

Assumption: Common Support

O<Pr(Di=1|Xi=x)<1 forany xe X

Read: For any value of X;, unit could have received treatment or control
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Identitying ATE

Intuition: Within strata of X, you have an experiment

Proof: for ATE, a, we have
Part 1. Identifiability of a(X):
E[Y1i — YoilXi = x] = E[Y1i|Xi = x, D = 1] — E[Y0i|X; = x, D; = 0]

= E[Y;|X; = x, D; = 1] — E[Yi|X; = x, D; = 0]
— E[a]X]

Part 2. Common support gets you back to «:

aate = E[Yii — Yoil
=E[E[Y1i — Yoi|Xi]] Why?

= [ (BLYID = 1,% = X ~ELY/D, = 0,X; = x| p(x)dX
— E[E[4/X]] = E[8]
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Identitying ATT

By the similar logic, aarr is also identified under the conditional ignorability
and common support assumptions:

aarr = E[&(X)) | D =1]
Proof is similar:
aarr = E[Yi(1) — Yi(0) | D; = 1]
= E[E[Y;(1) — Yi(0) | X;, D; =1] What is outer E over?
— [ELY(1) - Yi(0) | X = x,D, = p(x | D, = 1)okx
— [ {B1Y;1 X = x,D,= 1]~ E[Y;| X, = x,, =0l} plx | D; = 1)akx
_ E[&(x) | D, = 1].

Is aare = aarr When Cl holds?
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“As-if” randomization

- Causal inference in observational studies often rests on this “SOQO” (or
Cl) assumption

+ A useful intuition: “find strata of X in which you think an experiment
Is occurring”

- Goal is to approximate a randomized experiment within subgroups

- Plausibility of your conditional ignorability: can argue that variation in
treatment status within strata of X is random?
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Methods of Conditioning
(1) Matching

Compare like with like with “as-if” random assignment



‘Matching
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‘Matching
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‘Matching

@ For each treated unit / with covariates X;, you would like to estimate
a; = Y1 — Yoi-
@ For treated units you observe Yj;, but where to get Yp;?
@ Matching: borrow it from control unit with (nearly) the same X;
@ So estimator is:
QATT = N% 02 (Yi = Yin)

where Yj(; is the outcome of an untreated observation such that Xj; is the closest
value to X; among the untreated observations.

We can also use the average of M closest matches:

R 1 1 U
aArr:MZ Yi — A—/,ZY],,,(:'),

Dj=1 m=1



‘Matching
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Potential Outcome

Potential Outcome

unit | under Treatment under Control

i Yii Yoi D; | X
1 6 ? 1] 3
2 1 ? 1 1

3 0 ? 1 110
4 0 0| 2
5 9 0| 3
6 1 0| -2
7 1 0| -4

What is a1 = N1_1 ZD,-:1 (Y, — Y](,))7



‘Matching

45

Potential Outcome
unit | under Treatment

Potential Outcome
under Control

| Yii

—~—

6
1

0

NO O —

- = 0ol o oX

oo =24

What is aarr = N ZD 1(Y Y(,))
aarr=1/3-(6-9)+1/3- (1—0)+1/3 (0-9)=-37
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‘Shortcoming: Curse of Dimensionality

The volume increases exponentially when adding extra dimensions.

o o
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.



lCheck Balance
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Figure 3. Standardized Biases Without Stratification or Matching,
Open Circles, and Under the Optimal [.5, 2] Full Match, Shaded Circles.



lCheck Balance
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TABLE 2. Balance Summary Statistics and Tests: Russian and Chechen Sweeps

Pretreatment Mean Mean Mean Std. Rank Sum K-S
Covariates Treated Control Difference Bias Test Test

Demographics

Population 8.657 8.606 0.049 0.033 0.708 0.454

Tariga 0.076 0.048 0.028 0.104 0.331 —

Poverty 1.917 1.931 —0.016 -0.024 0.792 1.000

Spatial

Elevation 5.078 5.233 —0.155 -0.135 0.140 0.228

Isolation 1.007 1.070 —0.063 —0.096 0.343 0.851

Groznyy 0.131 0.138 —0.007 -0.018 0.864 —

War Dynamics

TAC 0.241 0.282 —0.041 —0.095 0.424 —

Garrison 0.379 0.414 —0.035 -0.072 0.549 —

Rebel 0.510 0.441 0.070 0.139 0.240 —

Selection

Presweep violence 3.083 3.117 —0.034 0.009 0.454 0.292

Large-scale theft 0.034 0.055 —0.021 -0.115 0.395 —

Killing 0.117 0.090 0.027 0.084 0.443 —

Violence Inflicted

Total abuse 0.970 0.833 0.137 0.124 0.131 0.454

Prior sweeps 1.729 1.812 —0.090 —0.089 0.394 0.367

Other

Month 7.428 6.986 0.442 0.130 0.260 0.292

Year 2004.159 2004.110 0.049 0.043 0.889 1.000

Note: 145 matched pairs. Matching with replacement.
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Methods of Conditioning

(1) Regression

Modeling the Conditional Expectation Function



Regression is Fitting a Linear CEF
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Regression is Fitting a Linear CEF
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Regression as an Estimator of Casual Effects

E[Y; | Di,Xi] = Bo+ B1Di+~" X

When is 8o.s a good estimator of aare?
We slipped in two assumptions:

(1) Constant treatment effect. We assumed

o a(X;) =E[Yyi — YoilXi]
e ...which implies a; = a for all /

(2) Linearity: Between our model and the Cl assumption, we asserted
E[Yi|X] = Bo+ B1di+~"X; for d=0,1
Equivalently,
Yig = Bo+ f1di+7" Xi+¢ for d=0,1
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'Constant Treatment Effect w/ Linear Potential Outcomes

Result: If treatment effect is constant across units and potential
outcomes are linear in Xj, then the OLS estimate of 34 in the following
regression model

Y = Bo+B1Di+~" X +¢

Is an unbiased and consistent estimator of aarg.

Proof (just how we got here):

E[81] = E[Y;|D; = 1, Xj] — E[Y;|D; = 0, Xj] (correct specification)
= E[Y1:|Xi] — E[Y0:|Xi]] (SOO)
= o(X)

E[B1] = a (constant effect assumption)

Note that if Cl and linearity hold, € cannot be related to D: traditional CIA assumption
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Example: The Effect of Schooling on Wages

- Wages on schooling (S), controlling for ability (A)

Yi = a+ pS; + Ay + €

- Ability is hard to measure. What if we leave it out?

- Omitted variable bias = The effect of the omitted x
The correlation between the omitted (A) and the included (S)

Cov Y,', 5,'
(, )=P+Y%5

V(5i)
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Moreover

When the two assumptions are not satisfied

- If potential outcomes are not linear in covariates X, regression provides
the best linear approximation to the population regression function.

- If the treatment effect is not constant, regression provides an unbiased
estimator for conditional-variance-weighted average treatment effect,
but not ATE or ATT.

aare = Y {E[Yi| Di=1,X = x] —E[Y;| D; = 0,X = X]} Pr(X = x)
xeXx
Garr = Y {E[Yi|Di=1,X=x]—E[Y;| D =0,X = x|} Pr(X; = x | D; = 1)
xeXx
Var(D; | X; = x) Pr(X; = x)
>_x Var(D; | X; = x") Pr(X; = x’)

Bos = > _{ElYi|Dj=1,X;=x]—E[Y; | D;=0,X = x]}
XexX
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Summary

- Matching and regression are main methods to estimate average causal
effects when one can assume conditional ignorability

« These are estimation strategies; the validity of the identification
strategy (SOO) remains a first-order concern

- Always ask yourself: what is the experiment your SOO estimation
strategy is approximating?

 Welcome to the



